Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Transplant ; 38(4): e15307, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38567897

RESUMO

BACKGROUND: The use of induction immunosuppression for heart transplantation (HT) is debated given the uncertain benefit and potential risks of infection and malignancy. METHODS: This is a retrospective single-center analysis of 475 consecutive HT recipients from 2003 to 2020 grouped by use of induction with basiliximab group (BG) and the no basiliximab group (NBG). Subgroup analysis by era compared pre-2016 standard-basiliximab (BX) induction and 2016-2020 with selective-BX use as part of a calcineurin-inhibitor-sparing regimen. RESULTS: When adjusted for confounders (sex, age, PRA, eGFR), the BG was less likely to have acute cellular rejection (ACR) (OR.42, p < .001), but had more antibody mediated rejection (AMR) (OR 11.7, p < .001) and more cardiac allograft vasculopathy (CAV) (OR 3.8, p = .04). There was no difference between BG and NBG in the incidence of malignancies or infections. When stratified by era (pre-2016 vs. 2016-2020), ACR remained less common in the BG than the NBG (36% vs. 50%, p = .045) groups, while AMR remained more common (9.7 vs. 0% p = .005). There was no significant difference in conditional survival comparing pre-and post-2016 NBG (HR 2.20 (95% CI.75-6.43); however, both pre-2016 BG and post-2016 BG have significantly higher mortality (HR 2.37 [95% CI 1.02-5.50) and HR 2.69 (95% CI 1.08-6.71), p = .045 and.03, respectively]. CONCLUSION: Basiliximab reduces the incidence of ACR but increases the risk of AMR, CAV, and may be associated with increased mortality. Mechanistic studies are needed to describe a potential T-cell-escape mechanism with enhanced humoral immunity.


Assuntos
Transplante de Coração , Neoplasias , Humanos , Basiliximab/uso terapêutico , Imunossupressores/uso terapêutico , Imunossupressores/farmacologia , Anticorpos Monoclonais/uso terapêutico , Estudos Retrospectivos , Rejeição de Enxerto/tratamento farmacológico , Rejeição de Enxerto/etiologia , Transplante de Coração/efeitos adversos , Proteínas Recombinantes de Fusão/uso terapêutico
3.
Curr Cardiol Rep ; 24(8): 1021-1030, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867195

RESUMO

PURPOSE OF REVIEW: Bicuspid aortic valve (BAV) is the most common congenital cardiac abnormality. It has a wide spectrum of clinical manifestations including aortic regurgitation (AR), aortic stenosis, and an associated aortopathy with a small but increased risk of aortic dissection. This review describes current knowledge of BAV, from anatomy and genetics to a discussion of multifaceted strategies utilized in the management of this unique patient population. This review will also highlight critical knowledge gaps in areas of basic and clinical research to enhance further understanding of this clinical entity. RECENT FINDINGS: The current knowledge regarding pathophysiologic mechanisms, screening, and surveillance guidelines for BAV and the associated aortopathy is discussed. We also discuss current management techniques for aortic valve repair versus replacement, indications for aortic surgery (root or ascending aorta), and the emergence of the Ross procedure as a viable management option not only in children, but also in adolescents and adults. The varied clinical phenotype of the BAV, resulting in its specific complex hemodynamic interactions, renders it an entity which is separate and distinct from the tricuspid aortic valve pathologies. While various aortic histopathologic and protein alterations in BAV patients have been described, it remains unclear if these changes are causal or the result of hemodynamic alterations imposed by sheer stress on the intrinsically dysfunctional BAV. Medical management for patients with BAV with AS, AI, or dilated aortic roots/ascending aortas remains challenging and needs further investigation. More than 50% of patients with BAV will undergo AVR during their lifetime, and more than 25% of patients with BAV undergo aortic surgery performed for dilation of the aortic root or ascending aorta, often concurrently with AVR. The search for the ultimate genetic or epigenetic cause of the different bicuspid phenotypes will ultimately be facilitated by the next-generation sequencing tools that allow for study of large populations at low cost. Improvements in diagnostic and stratification criteria to accurately risk assess BAV patients are critical to this process.


Assuntos
Insuficiência da Valva Aórtica , Estenose da Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Doenças das Valvas Cardíacas , Valva Aórtica/patologia , Insuficiência da Valva Aórtica/etiologia , Estenose da Valva Aórtica/cirurgia , Dilatação Patológica/patologia , Dilatação Patológica/cirurgia , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/cirurgia , Humanos
4.
J Am Soc Echocardiogr ; 35(9): 910-924, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487472

RESUMO

Imaging is central to the care of patients with infective endocarditis. Although transthoracic and transesophageal echocardiography are the principal imaging techniques, additional modalities including positron emission tomography and cardiac computed tomography, and to a lesser extent intracardiac echocardiography, play an increasing role. This review discusses the role of cardiac imaging in establishing the diagnosis of endocarditis, in predicting its embolic risk, and in making decisions regarding the need for and timing of surgery.


Assuntos
Endocardite Bacteriana , Endocardite , Próteses Valvulares Cardíacas , Ecocardiografia/métodos , Ecocardiografia Transesofagiana , Endocardite/diagnóstico por imagem , Endocardite Bacteriana/diagnóstico por imagem , Humanos
5.
J Mol Cell Cardiol ; 128: 38-50, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30625302

RESUMO

RATIONALE: LonP1 is an essential mitochondrial protease, which is crucial for maintaining mitochondrial proteostasis and mitigating cell stress. However, the importance of LonP1 during cardiac stress is largely unknown. OBJECTIVE: To determine the functions of LonP1 during ischemia/reperfusion (I/R) injury in vivo, and hypoxia-reoxygenation (H/R) stress in vitro. METHODS AND RESULTS: LonP1 was induced 2-fold in wild-type mice during cardiac ischemic preconditioning (IPC), which protected the heart against ischemia-reperfusion (I/R) injury. In contrast, haploinsufficiency of LonP1 (LONP1+/-) abrogated IPC-mediated cardioprotection. Furthermore, LONP1+/- mice showed significantly increased infarct size after I/R injury, whereas mice with 3-4 fold cardiac-specific overexpression of LonP1 (LonTg) had substantially smaller infarct size and reduced apoptosis compared to wild-type controls. To investigate the mechanisms underlying cardioprotection, LonTg mice were subjected to ischemia (45 min) followed by short intervals of reperfusion (10, 30, 120 min). During early reperfusion, the left ventricles of LonTg mice showed substantially reduced oxidative protein damage, maintained mitochondrial redox homeostasis, and showed a marked downregulation of both Complex I protein level and activity in contrast to NTg mice. Conversely, when LonP1 was knocked down in isolated neonatal rat ventricular myocytes (NRVMs), an up-regulation of Complex I subunits and electron transport chain (ETC) activities was observed, which was associated with increased superoxide production and reduced respiratory efficiency. The knockdown of LonP1 in NRVMs caused a striking dysmorphology of the mitochondrial inner membrane, mitochondrial hyperpolarization and increased hypoxia-reoxygenation (H/R)-activated apoptosis. Whereas, LonP1 overexpression blocked H/R-induced cell death. CONCLUSIONS: LonP1 is an endogenous mediator of cardioprotection. Our findings show that upregulation of LonP1 mitigates cardiac injury by preventing oxidative damage of proteins and lipids, preserving mitochondrial redox balance and reprogramming bioenergetics by reducing Complex I content and activity. Mechanisms that promote the upregulation of LonP1 could be beneficial in protecting the myocardium from cardiac stress and limiting I/R injury.


Assuntos
Proteases Dependentes de ATP/genética , Proteínas Mitocondriais/genética , Infarto do Miocárdio/genética , Estresse Oxidativo/genética , Traumatismo por Reperfusão/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica/genética , Precondicionamento Isquêmico Miocárdico , Lipídeos/genética , Camundongos , Mitocôndrias/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Superóxidos/metabolismo
6.
Sci Rep ; 7: 46324, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425440

RESUMO

The valosin-containing protein (VCP) participates in signaling pathways essential for cell homeostasis in multiple tissues, however, its function in the heart in vivo remains unknown. Here we offer the first description of the expression, function and mechanism of action of VCP in the mammalian heart in vivo in both normal and stress conditions. By using a transgenic (TG) mouse with cardiac-specific overexpression (3.5-fold) of VCP, we demonstrate that VCP is a new and powerful mediator of cardiac protection against cell death in vivo, as evidenced by a 50% reduction of infarct size after ischemia/reperfusion versus wild type. We also identify a novel role of VCP in preserving mitochondrial respiration and in preventing the opening of mitochondrial permeability transition pore in cardiac myocytes under stress. In particular, by genetic deletion of inducible isoform of nitric oxide synthase (iNOS) from VCP TG mouse and by pharmacological inhibition of iNOS in isolated cardiac myocytes, we reveal that an increase of expression and activity of iNOS in cardiomyocytes by VCP is an essential mechanistic link of VCP-mediated preservation of mitochondrial function. These data together demonstrate that VCP may represent a novel therapeutic avenue for the prevention of myocardial ischemia.


Assuntos
Respiração Celular , Sobrevivência Celular , Mitocôndrias/metabolismo , Miocárdio/metabolismo , Proteína com Valosina/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Biomarcadores , Respiração Celular/genética , Sobrevivência Celular/genética , Feminino , Deleção de Genes , Expressão Gênica , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Modelos Biológicos , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Consumo de Oxigênio , Proteína com Valosina/genética
7.
PLoS One ; 10(3): e0119537, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25746286

RESUMO

OBJECTIVES: Stress-inducible heat shock protein 22 (Hsp22) confers protection against ischemia through induction of the inducible isoform of nitric oxide synthase (iNOS). Hsp22 overexpression in vivo stimulates cardiac mitochondrial respiration, whereas Hsp22 deletion in vivo significantly reduces respiration. We hypothesized that Hsp22-mediated regulation of mitochondrial function is dependent upon its mitochondrial translocation together with iNOS. METHODS AND RESULTS: Adenoviruses harboring either the full coding sequence of Hsp22 (Ad-WT-Hsp22) or a mutant lacking a N-terminal 20 amino acid putative mitochondrial localization sequence (Ad-N20-Hsp22) were generated, and infected in rat neonatal cardiomyocytes. Compared to ß-Gal control, WT-Hsp22 accumulated in mitochondria by 2.5 fold (P<0.05) and increased oxygen consumption rates by 2-fold (P<0.01). This latter effect was abolished upon addition of the selective iNOS inhibitor, 1400 W. Ad-WT-Hsp22 significantly increased global iNOS expression by about 2.5-fold (P<0.01), and also increased iNOS mitochondrial localization by 4.5 fold vs. ß-gal (P<0.05). Upon comparable overexpression, the N20-Hsp22 mutant did not show significant mitochondrial translocation or stimulation of mitochondrial respiration. Moreover, although N20-Hsp22 did increase global iNOS expression by 4.6-fold, it did not promote iNOS mitochondrial translocation. CONCLUSION: Translocation of both Hsp22 and iNOS to the mitochondria is necessary for Hsp22-mediated stimulation of oxidative phosphorylation.


Assuntos
Proteínas de Choque Térmico HSP20/fisiologia , Mitocôndrias Cardíacas/metabolismo , Proteínas Musculares/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Células Cultivadas , Proteínas de Choque Térmico , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/enzimologia , Membranas Mitocondriais/metabolismo , Chaperonas Moleculares , Fosforilação Oxidativa , Transporte Proteico , Ratos , Ratos Sprague-Dawley
8.
Cardiovasc Res ; 99(4): 685-93, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23737493

RESUMO

AIMS: Expression of the heat shock protein 22 (Hsp22) in the heart stimulates cardiac cell survival through activation of the Akt pathway and expression of the inducible nitric oxide (NO) synthase (iNOS), the mediator of ischaemic preconditioning and the most powerful prophylaxis against cardiac cell death. The goal of the present study was to elucidate the downstream effector by which Hsp22 and Akt increase iNOS expression. We tested both in vivo and in vitro the hypothesis that such an effector is the valosin-containing protein (VCP), an Akt substrate, which activates the transcription factor NF-κB, using a transgenic mouse with cardiac-specific over-expression of Hsp22, as well as isolated rat cardiac myocytes. METHODS AND RESULTS: Using two-dimensional gel electrophoresis and mass spectrometry combined with immunoprecipitation, we found that Hsp22 and Akt co-localize and interact together with VCP. Adeno-mediated over-expression of VCP in isolated cardiac myocytes activated NF-κB and dose-dependently increased the expression of iNOS, which was abolished upon NF-κB inhibition. Over-expression of a dominant-negative (DN) mutant of VCP did not increase iNOS expression. VCP, but not its DN mutant, protected against chelerythrine-induced apoptosis, which was suppressed by inhibition of either NF-κB or iNOS. VCP-mediated activation of the NF-κB/iNOS pathway was also prevented upon inhibition of Akt. CONCLUSION: We conclude that the Akt substrate, VCP, mediates the increased expression of iNOS downstream from Hsp22 through an NF-κB-dependent mechanism.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Miócitos Cardíacos/fisiologia , Óxido Nítrico Sintase Tipo II/fisiologia , Adenosina Trifosfatases/análise , Animais , Proteínas de Ciclo Celular/análise , Sobrevivência Celular , Células Cultivadas , Proteínas de Choque Térmico HSP20/fisiologia , Proteínas de Choque Térmico , Isoenzimas/fisiologia , Masculino , Camundongos , Chaperonas Moleculares , Proteínas Musculares/fisiologia , Miócitos Cardíacos/citologia , NF-kappa B/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Ratos , Ratos Sprague-Dawley , Proteína com Valosina
9.
Circulation ; 124(4): 406-15, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21747053

RESUMO

BACKGROUND: Cardiac overload, a major cause of heart failure, induces the expression of the heat shock protein H11 kinase/Hsp22 (Hsp22). METHODS AND RESULTS: To determine the specific function of Hsp22 in that context, a knockout mouse model of Hsp22 deletion was generated. Although comparable to wild-type mice in basal conditions, knockout mice exposed to pressure overload developed less hypertrophy and showed ventricular dilation, impaired contractile function, increased myocyte length and accumulation of interstitial collagen, faster transition into heart failure, and increased mortality. Microarrays revealed that hearts from knockout mice failed to transactivate genes regulated by the transcription factor STAT3. Accordingly, nuclear STAT3 tyrosine phosphorylation was decreased in knockout mice. Silencing and overexpression experiments in isolated neonatal rat cardiomyocytes showed that Hsp22 activates STAT3 via production of interleukin-6 by the transcription factor nuclear factor-κB. In addition to its transcriptional function, STAT3 translocates to the mitochondria where it increases oxidative phosphorylation. Both mitochondrial STAT3 translocation and respiration were also significantly decreased in knockout mice. CONCLUSIONS: This study found that Hsp22 represents a previously undescribed activator of both nuclear and mitochondrial functions of STAT3, and its deletion in the context of pressure overload in vivo accelerates the transition into heart failure and increases mortality.


Assuntos
Deleção de Genes , Proteínas de Choque Térmico HSP20/genética , Insuficiência Cardíaca/genética , Mitocôndrias Cardíacas/genética , Proteínas Musculares/genética , Fator de Transcrição STAT3/genética , Animais , Cardiomegalia/enzimologia , Cardiomegalia/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Células Cultivadas , Colágeno/metabolismo , Perfilação da Expressão Gênica , Insuficiência Cardíaca/enzimologia , Insuficiência Cardíaca/mortalidade , Proteínas de Choque Térmico , Interleucina-6/biossíntese , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Chaperonas Moleculares , Miócitos Cardíacos/enzimologia , NF-kappa B/metabolismo , Fosforilação Oxidativa , Ratos
10.
Cardiovasc Res ; 77(3): 497-505, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18006445

RESUMO

AIMS: The regulation of protein degradation by the proteasome during cardiac hypertrophy remains largely unknown. Also, the proteasome translocates to the nuclear periphery in response to cellular stress in yeast, which remains unexplored in mammals. The purpose of this study was to determine the quantitative and qualitative adaptation of the proteasome during stable cardiac hypertrophy. METHODS AND RESULTS: We measured proteasome activity, expression and sub-cellular distribution in a model of chronic cardiac hypertrophy induced by the stress-response chaperone H11 Kinase/Hsp22 (Hsp22). Over-expression of Hsp22 in a transgenic (TG) mouse leads to a 30% increase in myocyte cross-sectional area compared to wild-type (WT) mice (P < 0.01). Characterization of the proteasome in hearts from TG mice vs. WT revealed an increased expression of both 19S and 20S subunits (P < 0.05), a doubling in 20S catalytic activity (P < 0.01), a redistribution of both subunits from the cytosol to the nuclear periphery, and a four-fold increase in nuclear-associated 20S catalytic activity (P < 0.001). The perinuclear proteasome co-localized and interacted with Hsp22. Inhibition of proteasome activity by epoxomicin reduced hypertrophy in TG by 50% (P < 0.05). Adeno-mediated over-expression of Hsp22 in isolated cardiac myocytes increased both cell growth and proteasome activity, and both were prevented upon inhibition of the proteasome. Similarly, stimulation of cardiac cell growth by pro-hypertrophic stimuli increased Hsp22 expression and proteasome activity, and proteasome inhibition in that setting prevented hypertrophy. Proteasome inhibitors also prevented the increase in rate of protein synthesis observed after over-expression of Hsp22 or upon addition of pro-hypertrophic stimuli. CONCLUSIONS: Hsp22-mediated cardiac hypertrophy promotes an increased expression and activity, and a subcellular redistribution of the proteasome. Inhibition of the proteasome reverses cardiac hypertrophy upon Hsp22 over-expression or upon stimulation by pro-hypertrophic hormones, and also blocks the stimulation of protein synthesis in these conditions.


Assuntos
Cardiomegalia/etiologia , Proteínas de Choque Térmico HSP20/fisiologia , Proteínas Musculares/fisiologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Animais , Cardiomegalia/enzimologia , Cardiomegalia/prevenção & controle , Proliferação de Células , Ativação Enzimática , Proteínas de Choque Térmico , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Inibidores de Proteassoma
11.
Cardiovasc Drug Rev ; 25(1): 14-29, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17445085

RESUMO

H11 kinase (H11K) is a small heat shock protein expressed predominantly in the heart and skeletal muscle, which plays a critical role in the maintenance of cardiac cell survival and in promoting cell growth through the activation of complementary signaling pathways. An overexpression of H11K was detected in various forms of heart disease, both in animal models and in patients, including acute and chronic ventricular dysfunction, and myocardial hypertrophy. Overexpression of H11K was reproduced in a cardiac-specific transgenic model, which led to significant progress in understanding the role and mechanism of action of the protein. Increased expression of H11K confers a cardioprotection that is equivalent to ischemic preconditioning; it promotes cardiac hypertrophy while maintaining contractile function. The overexpression of H11K is sufficient to activate most of the signaling pathways involved in cardiac cell growth and survival, including the phosphatidylinositol-3-kinase/Akt pathway, the AMP-dependent protein kinase, the PKCepsilon pathway of ischemic preconditioning, the nitric oxide pathway of delayed cardioprotection, and the mTOR pathway of cell growth. As a result, the survival response triggered by H11K in the heart includes antiapoptosis, cytoprotection, preconditioning, growth, and metabolic stimulation. In addition to activating signaling pathways, H11K promotes the subcellular translocation and crosstalk of intracellular messengers. This review discusses the biological function of H11K, its molecular mechanisms of action, and its potential therapeutic relevance. In particular, we discuss how preemptive conditioning of the heart by H11K might be beneficial for patients with ischemic heart disease who would be at risk of further irreversible cardiac damage.


Assuntos
Citoproteção/efeitos dos fármacos , Terapia Genética/métodos , Proteínas de Choque Térmico/antagonistas & inibidores , Isquemia Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Chaperonas Moleculares , Complexos Multienzimáticos/metabolismo , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação/efeitos dos fármacos , Conformação Proteica , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA